Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 71(9): 1055-1066, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35913584

RESUMO

BACKGROUND: Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined. METHODS: Mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with different concentrations of histones, and cell viability was detected by CCK-8 assay. Cellular senescence was assessed by SA ß-gal staining. C57BL/6 mice were treated with histones with or without BML-275 treatment. RT-qPCR was performed to determine the expression of inflammatory cytokines. Western blotting was used to analyze the expression of NLRP3, ASC and caspase-1 inflammasome proteins. The interaction of NLRP3 and ASC was detected by CoIP and immunofluorescence staining. RESULTS: In this study, we found that extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD (ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular inflammation induced by extracellular histones in vivo and in vitro. CONCLUSION: Extracellular histones induce inflammation and senescence in VSMCs, and blocking the AMPK/FOXO4 pathway is a potential target for the treatment of histonemediated organ injury.


Assuntos
Músculo Liso Vascular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead , Histonas/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
2.
Oncotarget ; 7(24): 35562-35576, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27191745

RESUMO

Previous studies demonstrated that aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which eliminates ALDH2 activity down to 1%-6%, is a susceptibility gene for coronary disease. Here we investigated the underlying mechanisms based on our prior clinical and experimental studies. Male apoE-/- mice were transfected with GFP, ALDH2-overexpression and ALDH2-RNAi lentivirus respectively (n=20 each) after constrictive collars were placed around the right common carotid arteries. Consequently, ALDH2 gene silencing led to an increased en face plaque area, more unstable plaque with heavier accumulation of lipids, more macrophages, less smooth muscle cells and collagen, which were associated with aggravated inflammation. However, ALDH2 overexpression displayed opposing effects. We also found that ALDH2 activity decreased in atherosclerotic plaques of human and aged apoE-/- mice. Moreover, in vitro experiments with human umbilical vein endothelial cells further illustrated that, inhibition of ALDH2 activity resulted in elevating inflammatory molecules, an increase of nuclear translocation of NF-κB, and enhanced phosphorylation of NF-κB p65, AP-1 c-Jun, Jun-N terminal kinase and p38 MAPK, while ALDH2 activation could trigger contrary effects. These findings suggested that ALDH2 can influence plaque development and vulnerability, and inflammation via MAPK, NF-κB and AP-1 signaling pathways.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença das Coronárias/patologia , Inflamação/metabolismo , Placa Aterosclerótica/patologia , Fatores Etários , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Células Cultivadas , Doença das Coronárias/sangue , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Humanos , Lentivirus/genética , Lipídeos/sangue , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...